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A hallmark of the motor system is its ability to execute different skilled movements as the situation warrants, thanks to the 
flexibility of motor learning. Much recent work has explored how the dynamics of neural populations drive movement 
preparation and execution[1,2], and a natural extension of this idea is to explore how changes in neural population 
dynamics facilitate motor learning. Previous neurophysiological studies of motor learning, using force-field adaptation 
paradigms, have characterized single neuron tuning properties in PMd and M1 and discovered that many individual 
neurons adapt their responses to compensate for the force field[3,4]. However, a large portion of neurons show 
heterogeneous responses to force field learning that are challenging to understand when we look at one neuron at a time. 
A different approach is to understand motor learning in a neural population dynamics framework. Yet it remains unclear 
how the computation for motor learning operates in the neural population. Here, we explore the changes in neural 
population activity that occur during curl force field adaptation as well as the spatial generalization of adapted behaviors.  
 
We trained rhesus monkeys to adapt to a curl force field, active only during reaches to a single adaptation target in a ring 
of 12 targets. In addition, reaches to adjacent, non-adapted targets using an “error clamp” were interleaved with the 
adaptation trials when monkeys learned to compensate for the force field (Fig. 1A). Behaviorally, monkeys showed 
gradual adaptation to the force field as indicated by decrease in the error of hand trajectory perpendicular to the desired 
direction of movement (the mean deviation from a straight-line hand path, Fig. 1B). Monkeys also showed a bell-shaped 
spatial generalization pattern: the level of hand force difference from baseline reaches decayed as a function of target 
angle away from the adaptation target (Fig. 2D).  

 
We recorded neural activity in PMd and M1 during adaptation and found two patterns of systematic changes in population 
activity patterns before movement initiation and during movement execution: 
 
Pattern 1: gradual adaptation and generalization of learning are reflected in a 2D neural subspace 
First, using the targeted dimensionality reduction approach[5], we projected preparatory neural population activity (200-
300 ms before movement initiation) into a 2D subspace where we found neural states were radially organized according to 
reach direction. In this subspace, the neural state for the adaptation target shifted towards that of the adjacent target 
opposite the direction of the curl field (measured before adaptation), and the shift distance of neural states was correlated 
with the change of perpendicular hand force in the first 100 ms after movement initiation (Fig. 2A,B). The neural states 
for nearby targets showed similar shifts towards their adjacent target states; the amount shifted diminished with a similar 
spatial profile to the behavioral generalization (Fig. 2C-E). These results demonstrate the correlation between hand force 

Fig. 1 Task design and behavioral performance. A. Task structure. In 
each session, monkeys first perform a block of center-out reaches to one 
of 16 targets with no curl field (block 1), followed by an adaptation 
block where curl force field is active during reaches to a single target 
(block 2; e.g. down reach clockwise field). When monkeys show 
behavioral adaptation, the task transitions to a third block where 70% 
trials are the same single-target curl field condition as in block 2 and 
30% are error clamp trials for one of 12 reaching targets (block 3). Error 
clamp trials are used to probe generalization of learning by measuring 
changes of hand forces compared to the baseline block. B. Behavioral 
adaptation and washout as indicated by the reduction of mean hand 
trajectory deviation from a straight-line path. The hand trajectory errors 
return to baseline level at late adaptation and late washout stages. 



and neural states during curl field adaptation, as well as a neural population correlate of motor learning generalization. 

 

Pattern 2: shift of neural states in a third dimension and learning of new neural state repertoire 
Second, during curl field learning, neural states for the adaptation target gradually shifted in a third dimension away from 
the baseline states (Fig. 3A,B). We observed a similar shift of neural states for all targets in error clamp trials (Fig. 3A). 
This result is intriguing because it also occurred to reaching targets far from the adaptation target for which no behavioral 
adaptation was observed. This suggests that the neural population generates a global change of activity correlated with the 
process of curl field adaptation but the change is not specific to the adapted reach.  
Furthermore, the separation of neural states in the baseline and error clamp blocks in this third dimension indicates that 
the neural population explored a different repertoire of activity patterns after curl field learning. We found neural 
repertoire change, quantified by the dissimilarity between neural state clusters, for both preparatory and movement neural 
states: preparatory states after learning were outside the domain of the before-learning preparatory states, and movement 
states after learning were outside the domain of the before-learning movement states (Fig. 3C, p < 0.0001). These results 
suggest that the neural population may utilize distinct activity patterns in the context of curl force field learning in a 
categorically different way from the “reassociation” strategy found in a short-term brain-computer interface learning 
context[6]. 

Overall, these findings are a first step towards understanding how neural population activity change systematically to 
facilitate adaptation to novel arm dynamics. This in turn may further elucidate how neural circuits learn to adapt their 
activity patterns in response to changing task demands. 
 
[1] Churchland et al., 2012, Nature. [2] Kaufman et al., 2014, Nature Neurosci. [3] Li et al., 2001, Neuron. [4] Cherian et 
al., 2013, J. Neurophys. [5] Mante, Sussilo et al., 2013, Nature. [6] Golub et al., 2018, Nature Neurosci. 

Fig. 3 A. Visualization of the gradually shifted neural states (gray circles) for the adaptation target away from the baseline states (color circles) and 
towards a new neural state repertoire in the error clamp trials (color diamonds). B. Quantification of neural state shift along the axis that best separates 
baseline and error clamp trial neural states (p < 0.001). C.  Neural repertoire change is quantified by assessing the distances between each post-learning  
neural activity pattern in the error clamp block and its nearest neighbors among all of the baseline activity patterns. Values near zero indicate neural 
repertoire preservation and larger values indicate repertoire change. Black boxes are results from control sessions where monkeys did thousands of 
center-out reaches in the absence of a curl field; red boxes are results from curl force field adaptation sessions. To compute repertoire change for each 
control session, we used trials in which the trial IDs match the baseline block and error clamp block in a learning session. 

Fig.2 Shift of preparatory neural states in a 2D subspace shows gradual adaptation and generalization of learning. A. In this 2D subspace, neural states are 
radially organized as a ‘ring’ corresponding to reach directions in the baseline block. The inset shows the gradual shift of neural states (gray circles) from 
the baseline state of the ‘adaptation’ target (magenta circle) to that of its adjacent target (purple circle). B. The neural state angular shift along the ‘ring’ 
during adaptation to a clockwise and a counterclockwise curl force field is correlated with the gradual change of perpendicular hand force in the first 
100ms after movement initiation (p < 1E-38, R2 = 0.3). Lighter dots correspond to earlier adaptation trials and darker dots later trials. C. Neural states for 
reaches to nearby targets shift radially and opposite the direction of the curl field (here is an example of adaptation to a clockwise curl field). Circles are 
baseline neural states and diamonds are neural states in error clamp block. D. Behavioral generalization measured by changes of hand force shows bell-
shaped pattern. E. Generalization of the neural states in the 2D subspace also shows bell-shaped pattern similar to behavioral generalization.  
 
  


