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Speaking requires coordinating articulator muscles with exquisite timing and precision. Understanding how the 
sensorimotor system accomplishes this requires studying its neural underpinnings. Neural measurements are 
also critical for identifying the causes of speech disorders and building brain-computer interfaces (BCIs) to 
restore speech. Speech is a uniquely human behavior, which makes electrophysiological investigations 
challenging. Previous direct neural recordings during speech have come from electrocorticography (ECoG)1 or 
single-unit (SUA) recordings from penetrating electrodes2 during clinical epilepsy treatment. Such studies have 
begun to characterize motor cortical dynamics underlying speech3, but not at the finer spatiotemporal scale 
uniquely afforded by high-density intracortical recordings often used in animal reaching studies4.  

We had the opportunity to study speech production at this detailed resolution by recording from 
multielectrode arrays previously chronically placed in human motor cortex as part of the BrainGate2 BCI clinical 
trial for people with paralysis5,6. The spiking rate of neurons in dorsal ‘arm areas’, where speech-related activity 
has not previously been reported, modulated during speaking. This finding challenges whether the conventional 
model of a ‘motor homunculus’ somatotopy7 extends to the single-neuron scale. It is, however, consistent with 
known links between hand and speech networks that may reflect hand-mouth coordination and an evolutionary 
relationship between manual and articulatory gestures8. Two neural population dynamics features previously 
reported for arm movements were also present during speaking: a large initial condition-invariant signal9, 
followed by rotatory dynamics4,5. This suggests that common neural dynamical motifs may underlie movement 
of arm and speech articulators. Lastly, spoken words and phonemes could be accurately decoded from single 
trials, demonstrating the potential utility of intracortical recordings for BCIs to restore speech. 
Finding 1: Dorsal motor cortex neurons respond during speaking and orofacial movements. 
Participant ‘T5’ performed a cued speaking task in which he heard a phoneme or word cue played from a 
computer speaker and spoke back that sound after hearing a go cue (Fig. 1A). We recorded SUA action 
potentials as well as potentially multiunit threshold-crossing spikes (TCs) and LFPs from electrodes in dorsal 
motor cortex (1B). This same dorsal neural population was previously shown to modulate during attempted arm 
and hand movements6. Here we found that these neurons’ firing rates strongly modulated during speech (1C). 
Across the arrays, 13/22 neurons and 73/104 electrodes’ TCs significantly responded during speaking at least 
one phoneme, with most responding to multiple phonemes (median = 4). This modulation was much greater 
when speaking than hearing sounds, and the same neural population was also active when T5 made orofacial 
movements of the mouth, lips, and tongue (1D). This suggests a broad encoding scheme related to motor 
cortical control of the speech articulators, consistent with previous ECoG findings in ventral motor cortex3.  

 
Fig. 1 A. Schematic of the cued speaking task. B. Blue squares mark the locations of the two 96-electrode arrays (1.5 mm length) in 
participant T5’s ‘hand knob’ area of left motor cortex. The zoom-in inset shows electrode locations, with shading indicating the number 
of different phonemes for which significantly firing rate changes were recorded (p < 0.05, rank-sum vs. silence). C. Raster plot showing 
spike times of an example neuron across multiple trials of speaking nine different phonemes, or silence. Trial-averaged firing rates for 
this neuron and one other are shown to the right (mean ± s.e.). Insets show these neurons’ action potential waveforms (mean ± s.d.). 
The electrodes where these neurons were recorded are circled in the panel B inset. D. How many neurons’ (top) and electrodes’ TCs 
(bottom) responded during only speaking phonemes (red), only non-speaking orofacial movements (blue), or both behaviors (purple). 
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Finding 2: Motor cortical population dynamics exhibit 
low-dimensional structure during speech. 
We tested whether two known key dynamical features of 
motor cortex population activity during arm reaching 
were also present during speaking. Prior monkey 
experiments showed that the neural state undergoes a 
rapid change during reach initiation which is dominated 
by a condition-invariant signal (CIS)9. This state change 
is believed to facilitate a shift from preparatory to 
movement neural dynamics. We observed similar 
dynamics during speech initiation: the CIS was the 
largest component of population activity (2A), its largest 
component (CIS1) was virtually identical across speaking 
different words (2B), and the rise times of the CIS1 

predicted individual trials’ speaking reaction times (r = -0.14, p<0.05, linear regression). 
Previous monkey4,9 and human5 studies found that subsequent peri-movement population activity 

during arm and hand movements is characterized by orderly rotatory dynamics. We saw similar neural state 
rotations during speaking (2C). These results suggest that motor cortex may ubiquitously deploy these 
dynamical motifs – a large transient input that “kicks” the network into a different state from which activity 
lawfully evolves according to rotatory dynamics – across a variety of different behaviors (e.g., speech and 
reaching) to construct the desired muscle activity from an oscillatory basis set.  

An important open question for these findings is to what extent these results were influenced by 
potential cortical remapping due to tetraplegia. Definitively resolving this ambiguity would require intracortical 
recording from this eloquent brain area in able-bodied people. 
Finding 3: Spoken words and phonemes can be decoded from intracortical activity. 
Examining the single-trial neural population activity during speaking revealed strong clustering by phoneme, 
with phonemes further grouping by phonetic similarities (3A). With an eye to evaluating the possible utility of 
these neural signals for speech BCIs, we quantified how well they could be used to classify which sound was 
being spoken on a single-trial basis. Prediction accuracy amongst nine phonemes, plus silence, was 84.6% 
(3B; shuffled chance accuracy was 10.1%). Prediction between ten short words, plus silence, was 83.5% 
accurate (chance was 9.1%).  

These results compare favorably to previously published decoding accuracies using ECoG1, despite our 
presumably suboptimal dorsal recording locations. This suggests a promising path forward for speech BCIs 
using intracortical electrophysiology, which can take advantage of an anticipated dramatic scale-up in the 
number of neurons that new, higher-density sensors will be able to record.  
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Fig. 3. A. t-SNE two-dimensional projections of single-trial neural 
feature vectors during speaking (all electrodes’ spike counts and 
high frequency LFP power in ten 100 ms bins centered on VOT). B. 
Confusion matrix showing the accuracy of predicting which 
phoneme was spoken from single-trial neural activity (multiclass 
SVM, leave-one-trial-out cross-validated). 
 

 
Fig. 2. A. Neural activity was decomposed into dPCA 
components like in 9. Each bar shows the relative variance 
captured by each dPCA component, which consists of both 
condition-invariant variance (CI, red) and condition-
dependent variance (CD, blue). These 8 dPCs captured 65% 
of the overall neural variance. The inset shows that the largest 
CIS component (CIS1) was almost orthogonal to the largest 
CD components. B. Trial-averaged firing rates when initiating 
speaking different words (each trace) projected onto CIS1.  
C. Trial-averaged firing rates from 150 ms before to 100 ms 
after VOT were reduced to the top 6 PCs and then projected 
onto the first jPCA plane as in 4. This plane captures 38% of 
the top 6 PCs’ variance, and rotatory dynamics fit moment-
by-moment neural state change with R2 = 0.81 in this plane. 
Inset histogram shows significance testing of this result: the 
true data’s R2 in the full 6-PC subspace exceeded the R2 from 
all 1000 surrogate datasets constructed using the population 
dynamics hypothesis testing method of 10 (specifically, the 
TNC tensor maximum entropy method). 


